The Mechanism of Formaldehyde Loss from the Oxonium lons $CH_3CH_2CH_2CH_2CH_3$ and $CH_3CH_2CH_2CH_2CH_2$

Richard D. Bowen,* Alex W. Colburn, and Peter J. Derrick

Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.

In contrast to CH₃CH₂(CH₃)C=O+CH₃ and (CH₃)₂CHCH=O+CH₃, which in slow dissociations lose mainly CH₃OH, metastable CH₃CH₂CH₂CH=O+CH₃ expels predominantly CH₂O by isomerising to CH₃CH₂CH₂CH₂+O=CH₂, probably *via* two 1,2-H shifts and a subsequent 1,5-H shift; CH₃CH₂CH₂CH₂+O=CH₂ undergoes limited interconversion with CH₃+CHCH₂CH₂CH₃, prior to CH₂O elimination, *via* a 1,5-H shift.

Considerable progress has been made recently in understanding the unimolecular reactions of isolated organic ions. ^{1,2} In closed-shell, even-electron cations, rearrangement steps involving 1,2-H or 1,2-alkyl migrations between adjacent carbon atoms occur readily at energies close to the thermochemical threshold. ^{1,3} Similarly, 1,5-H and, to a lesser degree, 1,4-H shifts are apparently facile. ¹ Little evidence is available, however, concerning the feasibility of 1,3-H migrations between carbon atoms separated by an intervening sp² carbon atom.

The reactions of four isomeric C₅H₁₁O⁺ ions generated by ionisation and fragmentation of ethers are given in Table 1. The closely similar behaviour of CH₃CH₂(CH₃)C=O+CH₃ (1), and (CH₃)₂CHCH=O+CH₃ (2), is taken to reflect the ease of their conversion to the relatively stable secondary carbonium ion CH₃+CH(CH₃)CHOCH₃ (5), by a 1,2-H and 1,2-CH₃ shift, respectively. CH₃CH₂CH₂CH=O+CH₃ (3), could presumably isomerise to (1) only by undergoing a 1,2-C₂H₅ shift to form the energetically inaccessible primary carbonium CH₃CH₂(+CH₂)CHOCH₃ (6), Scheme 1. The reactions of

CH₃CH₂CH₂CH=O⁺CH₃ (3) actually show some resemblance to those of CH₃CH₂CH₂CH₂CH₂+O=CH₂ (4). Isomerisation of (3) to (4) can be envisaged to occur by two 1,2-H shifts $[(3) \rightarrow (7) \rightarrow (8)]$, followed by a 1,5-H-migration $[(8) \rightarrow (4)]$. Alternatively, (3) \rightarrow (8) might conceivably take place *via* a direct 1,3-H shift. The chemistry of (1—4) is summarised by the potential energy profile¹ of Figure 1; this is constructed using known^{4—6} or estimated^{7—10} enthalpies of formation of reactants, intermediates and products.

Three pieces of experimental evidence show that interconversion of ions formed initially as (3) and (4) cannot be rapid and reversible compared to the rate of dissociation. Firstly, the relative abundances of the fragmentation processes of (3) and (4), although similar, are appreciably different: (4) expels significantly more H_2O than does (3). Secondly, $CH_3CH_2CH_2CH=O^+CD_3$ expels CD_2O and C_3H_6 with high specificities (97 and 96%, respectively, in formaldehyde and propene losses). This is consistent with the step (8) \rightarrow (4) being essentially irreversible with σ -cleavage of (8) to $CH_3CH=CH_2$ and $CH_2=O^+CH_3$ occurring faster than equilibration of (8), formed from (3), with (4). Thirdly,

Scheme 1

Table 1. Reactions of metastable C₅H₁₁O⁺ ions.

Neutral species lost

		H ₂ O		CH ₂ O		CH ₃ OH		C ₃ H ₆	
Ion		RAa	T _{1/2} b	RAa	T _{1/2} b	RAa	T _{1/2} b	RA^a	T _{1/2} b
CH ₃ CH ₂ (CH ₃)C=O+CH ₃	(1)	<1	c	6	1.9	86	1.7	7	1.9
(CH ₃) ₂ CHCH=O+CH ₃	(2)	<1	c	9	1.8	83	1.7	7	1.9
CH ₃ CH ₂ CH ₂ CH=O+CH ₃	(3)	< 0.5	c	91	1.4	4	1.4	4.5	1.6
CH ₃ CH ₂ CH ₂ CH ₂ +O=CH ₂	(4)	3	1.7	87	1.3	5	c	5	1.6

^a Relative abundances measured by metastable peak areas and normalised to a total metastable ion current of 100 units for ions decomposing in the second field-free region of a research mass spectrometer of very large dimensions equipped with a post acceleration detector (P. G. Cullis, G. M. Neumann, D. E. Rogers, and P. J. Derrick, *Adv. Mass Spectrom.*, 1980, 8, 1729). ^b Kinetic energy releases in kJ mol⁻¹ measured from the width-at-half-height of the appropriate metastable peak. ^c Peak too weak to permit accurate measurement.

CH₃CH₂CH₂CH₂+O=CD₂ eliminates CD₂O, CHDO and CH₂O in the ratios 37:57:6, respectively. If formaldehyde loss from (4) occurred without any rearrangement of (4) to (8), then only CD₂O loss from CH₃CH₂CH₂CH₂+O=CD₂ would be expected. Conversely, if (4) and (8) were in fast equilibrium prior to formaldehyde expulsion, then CH₃CH₂CH₂CH₂+O=OD₂ ought to eliminate CD₂O, CHDO and CH₂O in the ratios 17:67:17, respectively. It is clear, therefore, that limited interconversion of (4) and (8) precedes expulsion of formaldehyde from (4). A similar conclusion concerning propene loss from (4) follows from the observation that CH₃CH₂CH₂CH₂+O=CD₂ expels C₃H₆, C₃H₅D and C₃H₄D₂ in the ratios 40:38:22 respectively.

The finding that (4) undergoes more extensive equilibration with (8) than is found starting from (3) has three important consequences. Firstly, there is evidently a significant barrier towards a direct 1,3-H shift in (3). If such a process could occur at or near the thermochemical threshold (dotted line in Figure

1), then there is no reason why (3) should not interconvert with (8) [and, therefore, (4)] prior to decomposition. However, if conversion of (3) to (8) takes place in two stages, via consecutive 1,2-H shifts involving (7), the energy barrier towards production of (8) from (3) is significantly raised. This reflects the higher estimated enthalpy of formation of (7), which is destabilised by interaction of the positive charge notionally localised on carbon with the nearby β -methoxy group. The destabilisation of (8), by interaction of the positive charge with the more distant y-methoxy group, is significantly smaller than that in (7).11 A logical interpretation is that the mechanism of CH₂O loss from (3) involves consecutive 1,2-H shifts, the former of which $[(3) \rightarrow (7)]$ is probably the rate-determining step. An alternative possibility is that $(3) \rightarrow$ (8) occurs directly, with a significant additional critical energy, thus circumventing or competing with the two-step route, (3) \rightarrow (7) \rightarrow (8). Secondly, the 1,5-H shift, (4) \rightarrow (8), evidently Thus, the behaviour occurs relatively easily. CH₃CH₂CH₂+O=CD₂ can be explained on the basis of limited interconversion with CH₃+CHCH₂CH₂OCHD₂ (and, subsequently, CH₃CHDCH₂CH₂+O=CHD) without extensive involvement of CH₃CH₂+CHCH₂OCHD₂ and related species. Only a few ions are able to rearrange to CH₃+CDCHDCH₂OCH₃ (via CH₃CHD+CHCH₂OCH₂D, CH₃+CHCHDCH₂OCH₂D and CH₃CHDCHDCH₂+O=CH₂) and so expel C₃H₄D₂. If all six hydrogen atoms in the three CH₂ groups of CH₃CH₂CH₂CH₂+O=CD₂ were able to exchange with the two deuteriums, a much greater proportion (54%) of CH₂O loss would be expected than is actually observed (6%) in the formaldehyde elimination. Conse-

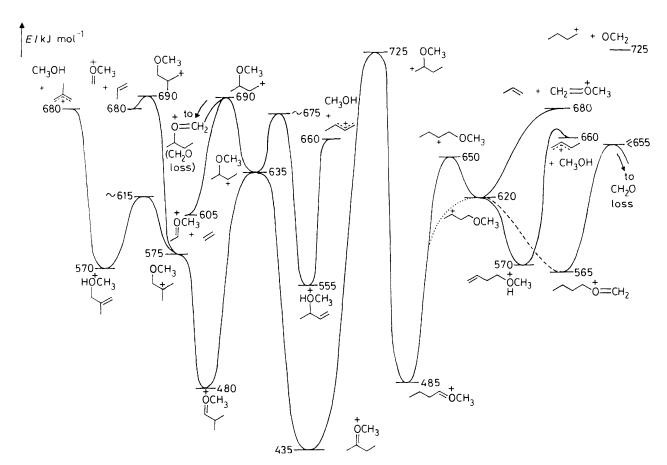


Figure 1. Potential energy profile for isomerisation and dissociation of (1)—(4).

quently, $(4) \rightarrow (8)$ evidently occurs at or near the thermochemical threshold (broken line in Figure 1), but further rearrangement to (7) [and thence (3)] requires more energy and takes place less readily. This supports the view that (7) suffers a greater destabilisation than (8), owing to the closer proximity of the electron withdrawing β -methoxy group to the cationic centre. 11 Elimination of formaldehyde from (4) has previously been interpreted12 as involving ion-dipole complexes comprising a C₄H₉+ cation co-ordinated to O=CH₂. Rearrangement of the incipient cation in these complexes can occur, at energies below those needed to induce dissociation, thus permitting the eventual production of the thermodynamically most favourable products $[(CH_3)_3C^+ + O=CH_2]$. The highest energy transition state en route to these products probably corresponds to CH₃CH₂CH₂CH₂+···O=CH₂.12 The enthalpy of formation of this species is estimated to be at least 70 kJ mol-1 lower than the combined enthalpies of formation (725 kJ mol-1) of the corresponding separated products (CH₃CH₂CH₂CH₂+ + O=CH₂), Figure 1. Thirdly, loss of propene from (4) is best interpreted as a two-step process, involving a 1,5-H shift followed by subsequent σ-cleavage of (8). If propene loss occurred from (4) via a synchronously concerted pericyclic mechanism, equation (1), only C₃H₆ elimination from CH₃CH₂CH₂CH₂+O=CD₂ would be expected. Propene loss from (4) is formally isoelectronic with elimination of propene from hex-1-ene via a 'retro-ene' reaction, equation **(2)**. The behaviour CH₃CH₂CH₂+O=CD₂, therefore, indicates that when such oxonium ions expel alkenes by routes which may be formulated as pericyclic processes, these reactions do not necessarily occur via synchronously concerted mechanisms. Similar conclusions have been reached for other classes of organic ions: dissociation via pericyclic reactions usually appears to involve stepwise mechanisms, particularly at low internal energies, 13-15 though exceptions to this generalisation have been reported.16

Financial support from the S.E.R.C., including the award of an Advanced Fellowship to R. D. B., is gratefully acknowledged.

Received, 8th May 1989; Com. 9/019211

References

- D. H. Williams, Acc. Chem. Res., 1977, 10, 280; D. H. Williams, Philos. Trans. Roy. Soc. London, 1979, A293, 117; R. D. Bowen, D. H. Williams, and H. Schwarz, Angew. Chem., Int. Ed. Engl., 1979, 18, 451; R. D. Bowen and D. H. Williams, in 'Rearrangements in Ground and Excited States,' ed. P. MeMayo, Academic Press, New York, 1980, vol. 1, ch. 2.
- J. L. Holmes and J. K. Terlouw, Org. Mass Spectrom., 1980, 12, 383;
 J. L. Holmes, Org. Mass Spectrom., 1985, 20, 169.
- J. V. Headley and A. G. Harrison, Can. J. Chem., 1985, 63, 609;
 M. Weiss, R. A. Crombie, and A. G. Harrison, Org. Mass Spectrom., 1987, 22, 216.
- 4 J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, 'Ionization Potentials, Appearance Potentials and Heats of Formation of Gaseous Positive Ions,' National Bureau of Standards, Washington DC, 1969; H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Herron, J. Phys. Chem. Ref. Data Suppl. 1, 1977, 6.
- F. P. Lossing and G. P. Semeluk, Can. J. Chem., 1970, 48, 955;
 F. P. Lossing, Can. J. Chem., 1972, 50, 3973;
 F. P. Lossing, J. Am. Chem. Soc., 1977, 99, 7526.
- 6 S. G. Lias, J. F. Liebman, and R. D. Levin, J. Phys. Chem. Ref. Data, 1984, 13, 695.
- 7 J. L. Franklin, Ind. Eng. Chem., 1949, 41, 1070; J. L. Franklin, J. Chem. Phys., 1953, 21, 2029.
- 8 S. W. Benson, 'Thermochemical Kinetics,' 2nd edn., Wiley, New York, 1976.
- 9 R. D. Bowen and D. H. Williams, Org. Mass Spectrom., 1977, 12, 475; see also ref. 10.
- J. L. Holmes, M. Fingas, and F. P. Lossing, Can. J. Chem., 1981,
 80; F. P. Lossing and J. L. Holmes, J. Am. Chem. Soc., 1984,
 6917.
- 11 L. Radom, J. A. Pople, and P. v. R. Schleyer, J. Am. Chem. Soc., 1972, 94, 5935.
- 12 R. D. Bowen, B. J. Stapleton, and D. H. Williams, J. Chem. Soc., Chem. Commun., 1978, 24.
- 13 R. D. Bowen, J. Chem. Soc., Perkin Trans. 2, 1980, 1219; 1982, 409
- 14 F. P. Boer, T. W. Shannon, and F. W. McLafferty, J. Am. Chem. Soc., 1968, 90, 7239; J. S. Smith and F. W. McLafferty, Org. Mass Spectrom., 1971, 5, 483; D. J. McAdoo, D. N. Witiak, F. W. McLafferty, and J. D. Dill, J. Am. Chem. Soc., 1978, 100, 6639.
- D. J. McAdoo and C. E. Hudson, Int. J. Mass Spectrom. Ion Proc., 1984, 62, 269.
- 16 C. E. Allison, M. B. Stringer, J. H. Bowie, and P. J. Derrick, J. Am. Chem. Soc., 1988, 110, 6291.